1 In Fig. 6, OAB is a thin bent rod, with $\mathrm{OA}=a$ metres, $\mathrm{AB}=b$ metres and angle $\mathrm{OAB}=120^{\circ}$. The bent rod lies in a vertical plane. OA makes an angle θ above the horizontal. The vertical height BD of B above O is h metres. The horizontal through A meets BD at C and the vertical through A meets OD at E.

Fig. 6
(i) Find angle BAC in terms of θ. Hence show that

$$
\begin{equation*}
h=a \sin \theta+b \sin \left(\theta-60^{\circ}\right) . \tag{3}
\end{equation*}
$$

(ii) Hence show that $h=\left(a+\frac{1}{2} b\right) \sin \theta-\frac{\sqrt{3}}{2} b \cos \theta$.

The rod now rotates about O , so that θ varies. You may assume that the formulae for h in parts (i) and (ii) remain valid.
(iii) Show that OB is horizontal when $\tan \theta=\frac{\sqrt{3} b}{2 a+b}$.

In the case when $a=1$ and $b=2, h=2 \sin \theta-\sqrt{3} \cos \theta$.
(iv) Express $2 \sin \theta-\sqrt{3} \cos \theta$ in the form $R \sin (\theta-\alpha)$. Hence, for this case, write down the maximum value of h and the corresponding value of θ.

2 Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0<\alpha<{ }_{2} \pi$.
Hence solve the equation $3 \cos \theta+4 \sin \theta=2$ for $-\pi \leqslant \theta \leqslant \pi$.

3 Show that the equation $\operatorname{cosec} x+5 \cot x=3 \sin x$ may be rearranged as

$$
3 \cos ^{2} x+5 \cos x-2=0
$$

Hence solve the equation for $0^{\circ} \leqslant x \leqslant 360^{\circ}$, giving your answers to 1 decimal place.

4 Part of the track of a roller-coaster is modelled by a curve with the parametric equations

$$
x=2 \theta-\sin \theta, \quad y=4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .
$$

This is shown in Fig. 8. B is a minimum point, and BC is vertical.

Fig. 8
(i) Find the values of the parameter at A and B.

Hence show that the ratio of the lengths OA and AC is $(\pi-1):(\pi+1)$.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ. Find the gradient of the track at A .
(iii) Show that, when the gradient of the track is $1, \theta$ satisfies the equation

$$
\begin{equation*}
\cos \theta-4 \sin \theta=2 \tag{2}
\end{equation*}
$$

(iv) Express $\cos \theta-4 \sin \theta$ in the form $R \cos (\theta+\alpha)$.

Hence solve the equation $\cos \theta-4 \sin \theta=2$ for $0 \leqslant \theta \leqslant 2 \pi$.

5 Express $4 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
Hence solve the equation $4 \cos \theta-\sin \theta=3$, for $0 \leqslant \theta \leqslant 2 \pi$.

